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A mathematical model is presented for analyzing the convective Maxwell fluid over a

stretching porous surface in the presence of nanoparticles. The analysis of stagnation

point and heat transfer of convected Maxwell fluid with slip boundary condition is in-

vestigated. To convert the governing partial differential equations (PDEs) into a system

of nonlinear ordinary differential equations (ODEs) we use similarity transformations.

Shooting method is used to solve the system of ODEs numerically and obtained numer-

ical results are compared with those obtained by the built-in bvp4c function in Matlab.

The numerical values obtained for the velocity, temperature and concentration profiles

are presented through graphs and tables. A discussion on the effects of various physical

parameters and heat transfer characteristics is also included.
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Chapter 1

Introduction

The transfer of heat by the movement of fluids from one place to another is called

convective heat transfer. Convective heat transfer is combination of heat diffusion and

bulk fluid flow that are called conduction and advection simultaneously. In engineering

problems convective heat transfer has wide applications. Large number of investiga-

tions on nanofluids (i.e mixture of fluid and nanoparticles) shows that it can improve

thermal conductivity in fluids. Nanofluid is a fluid containing nanometer-sized parti-

cles called nanoparticles. These nanoparticles are made of metals, oxides, carbides etc.

Nanofluids have properties that make them potentially useful in many heat transfer

applications. They exhibit enhanced thermal conductivity and convective heat transfer

coefficient. Choi [1] studied the enhancing thermal conductivity of fluid with nanopar-

ticles. Eastman et al. [2] have reviewed the detailed work done on convective transport

in nanofluid. The different theories of heat transfer in nanofluids are discussed by Boun-

giorno [3]. Kuznetsov and Nield [4] studied the convective nanofluid in vertical plate,

later they extended their work for porous medium as well [5].

In [6], Makinde and Aziz studied the effect of convective boundary condition on a bound-

ary layer flow in nanofluid. Ramesh and Gireesha [7] considered the heat source/sink

of Maxwell fluid over stretching sheet with convective boundary condition in boundary

layer flow in the presence of nanoparticles. In non-Newtonian fluids the behaviour of

boundary layer flow seeks much interest due to many applications in manufacturing

and industrial processes. The magnetohydrodynamics (MHD) flow of Maxwell fluid in

thermophoresis and chemical reaction over a vertical sheet is presented by Noor [8].

Akbar et al. [9] discussed the effect of MHD and thermal radiation on Maxwell fluid

over a stretching sheet. According to their observation, the elasticity number causes

an enhancement in the heat transfer rate from the stretching sheet by the increase of

magnetic parameter. Hayat et al. [10] worked on rotating Maxwell fluid in a porous

medium and obtained analytical solution for unsteady MHD fluid.
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Introduction 2

Kumaria et al. [11] observed the MHD mixed convection stagnation-point flow of an

upper convected Maxwell fluid. They concluded that with the increase in the elasticity

number, reduction in the surface heat transfer, surface velocity gradient and displace-

ment thickness was experienced. In [12–14] authors applied slip boundary conditions in

an incompressible boundary layer flow. In recent years, MHD flows of viscoelastic fluids

with or without heat transfer over a stretching sheets have also been addressed by some

researchers [15–18].

Bhattacharyya et al. [19] analyzed the convection flow of boundary layer force and heat

transfer past a porous plate with velocity and temperature slip effect. Das [20] observed

the impact of partial slip, thermal radiation, chemical reaction, and temperature depen-

dent fluid properties with constant heat flux over a premeable plate and nonuniform heat

source/sink. The effects of partial slip, heat generation on the flow, thermal buoyancy

and heat transfer of nanofluids are examined by Das [20]. Aminreza et al. [21] examined

the effect of partial slip on flow and heat transfer of nanofluids past a stretching sheet.

Zheng et al. [22] analyzed the effect of velocity slip on MHD flow and heat transfer

over a porous sheet. Recently, the influence of partial slip flow and heat transfer over a

stretching sheet in a nanofluid are examined by Sharma et al. [23].

Thesis contribution

In this thesis we present a review study of Cao et al. [24] and then extend the flow

analysis with variable thermophysical properties. The obtained system of PDEs are

transformed into a system of nonlinear coupled ODEs by using a suitable techniques.

A numerical solution of the system of ODEs is obtained by using shooting method and

comparison with the obtained numerical results by bvp4c code in Matlab. The numerical

results are discussed for different parameters appearing in the solution.

Thesis outline

The thesis is described as follows:

In Chapter 2, we discuss some basic definitions of fluid, flow, heat transfer, boundary

layer flow, basic governing laws, similarity transform and discussion on the shooting

method. Furthermore, these concepts are used on describing the flow, heat transfer and

the influence of thermophysical properties.



Introduction 3

Chapter 3 contains a comprehensive review of Cao et al. [24]. A numerical study of

incompressible, two-dimensional steady fluid flowing with convective boundary condi-

tion past a stretching porous surface has been analyzed. The constitutive equations of

the flow model are solved numerically and the impact of physical parameters concerning

the flow model on dimensionless temperature, velocity and concentration are presented

through graphs and tables. Also a comparison of the obtained numerical results with the

published results of Cao et al. [24] has been made and found that both are in excellent

agreement.

In Chapter 4, we discuss the viscous, incompressible, time independent flow with

heat transfer past a flat porous plate with thermal radiation and chemical reaction.

The obtained system of ODEs are solved numerically after applying a proper similarity

transformation. Graphs and tables describe the behavior of physical parameters. Nu-

merical values of momentum, temperature and concentration have also been computed

and discussed in this chapter.

Chapter 5 summarizes up the study and gives the major results obtained from the

entire research and suggests recommendations for the future work.

All the references used in this study are listed in Bibliography.



Chapter 2

Basic definitions and governing

equations

2.1 Basic Terminologies

In this chapter, some basic laws, terminologies and definitions will be explained, which

will be helpful in continuing the work for the next chapters.

Definition 2.1.1. Fluid

In mathematical literature, a substance that has ability to flow and easily move and

change its position is called fluid. That substance may be a liquid or gas.

Definition 2.1.2. Fluid mechanics

The area of physical sciences that deals with the behaviour of fluid at rest or in motion

and the interaction of fluids with solids or other fluids at boundaries is called the fluid

mechanics. It can be divided into further categories presented below.

Definition 2.1.3. Fluid statics

The branch of fluid mechanics that deals with the study of fluid and its characteristics

at constant position is called the fluid statics.

Definition 2.1.4. Fluid dynamics

The branch that deals with the study of fluid in motion from one place to another is

called fluid dynamics.

Definition 2.1.5. Uniform and non-uniform flows

If the magnitude and direction of velocity of the fluid at every point of flow is the same,

then it is called the uniform flow. But if the velocity at every point of the flow is not

the same, then the flow becomes non-uniform.

4



Basic definitions and governing equations 5

Definition 2.1.6. Steady and unsteady flows

If the fluid flow property at a specific point is independent of time, it is called steady

flow, i.e.,
∂P

∂t
= 0,

where P is any fluid property like pressure, density, velosity.

A flow in which fluid property is time dependent is called unsteady flow, i.e.,

∂P

∂t
6= 0.

Definition 2.1.7. Laminar and turbulent flows

The flow in which the fluid moves in a smooth path and paths never intersect each other

is called laminar flow. The flow in which fluid particles do not have a definite path and

the path lines also intersect each other is called turbulent flow. The velocity of fluid is

not constant at every point in turbulent fluid.

Definition 2.1.8. Compressible and incompressible flows

If the density of fluid is constant in flow field, then the flow is called incompressible flow.

For incompressible flow the mathematical equation is given as

dρ

dt
= 0,

where ρ denotes the fluid density and D
Dt denotes material derivative.

D

Dt
=

∂

∂t
+ V · ∇. (2.1)

In Eq. (2.1) V is velocity of flow and ∇ denotes differential operator. In Cartesian

coordinate system ∇ is given as

∇ =
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂.

The flow in which density is not constant, is known as compressible flow.

Definition 2.1.9. Viscosity

It is the property of fluid that measures the resistance to flow. The viscosity is denoted

by µ. Viscosity can be described in two different catagories.

Definition 2.1.10. Dynamic viscosity

The measurement of internal resistance of fluid is called dynamic viscosity. Mathemati-

cally, it is defined as the ratio of shear stress to the rate of shear strain and it is denoted

by µ.

Viscosity(µ) =
Shear stress

Rate of shear strain
.
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In the above expression the coefficient of viscosity µ is also known as absolute viscosity or

dynamic viscosity or simply viscosity. The SI unit of viscosity is kg/ms or Pascal-second

[Pa.s].

Definition 2.1.11. Kinematic viscosity

It is the ratio of dynamic viscosity µ to the density of the fluid and it is represented by

ν, Mathematically

ν =
µ

ρ
.

Its unit in SI system is m2/s. ρ is the density of fluid.

Definition 2.1.12. Newtonian and non-newtonian fluids

The fluid in which the stress is linearly related to the deformation rate, is called New-

tonian fluid. Newtonian fluid behaviour is written as

τ = µ
du

dy
.

In the above equation, τ denotes stress tensor, viscosity is µ and deformation rate is du
dy .

Fluids in which the shear stress is not linearly related to deformation rate are known as

non-newtonian fluids.

Definition 2.1.13. Generalized continuity equation

Law of conservation of mass states that mass can neither be created nor destroyed inside

a control volume is the base of continuity equation. The mass will not be changed inside

the fixed control system. If we examine a control volume system, then the continuity

equation can be written as
∂ρ

∂t
+∇.(ρV) = 0. (2.2)

If the density is constant, Eq. (2.2) becomes

∇ ·V = 0.

Definition 2.1.14. Generalized momentum equation

For fluid particles, the equation of generalized linear momentum is observed from the

Newton’s second law of motion. It is stats as: “The net force F is equal to the rate of

change of linear momentum with time.” Newton’s second law can be written as

m
DV

Dt
= F.

The differential equation for flow of the fluid is represented as

ρ
DV

Dt
= ∇.τ + ρb,
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where ρb denotes net body force, ∇.τ denotes surface forces and τ denotes Cauchy stress

tensor.

Definition 2.1.15. Heat transfer

Energy transfer due to temperature difference is called heat transfer. Heat transfer can

occur through conduction, convection or radiation.

Definition 2.1.16. Conduction

Conduction is a process in which the heat is transferred between those objects that are

in direct contact with each other.

Definition 2.1.17. Convection

Transfer of heat through fluids (gases or liquids) from hot places to cold places is called

convection. Convective heat transfer depends on the nature of the flow. Water boiling

in pan is good example of convection. There are three forms of convection : forced

convection, natural convection or free convection and mixed convection.

Definition 2.1.18. Forced convection

Convection which is produced by heat transport process by an external source is called

forced convection. In other words a heat transfer technique in which fluid motion is

developed by an independent source like a fan and pump etc is called forced convection.

Definition 2.1.19. Natural convection

The fluid motion is not generated by any external source in heat transport process,

but the density differences in the fluid occurring due to temperature gradient. Natural

convection is also called free convection.

Definition 2.1.20. Mixed convection

It occurs by combined effect of forced and natural convection to transfer heat. In other

words, when both natural and forced convection processes simultaneously contribute to

cause heat transfer, mixed convection appears.

Definition 2.1.21. Radiation

Radiation is a transfer of energy due to discharge of electromagnetic waves from a surface

volume. It doesn’t need any medium to transfer heat.

Definition 2.1.22. Thermal conductivity

Thermal conductivity (κ) is the property of a material related to its capability to conduct

heat. Mathematically,

κ =
q∇l
S∇T

,

where q is the heat passing through a surface area S, causing a temperature difference

∇T over a distance of ∇l. Here l, S and ∇T are all assumed to have unit measurement.

The unit of thermal conductivity in SI unit is W
m.κ and its dimension is [MLT−3θ−1].
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Definition 2.1.23. Thermal diffusivity

Thermal diffusivity is material property for unsteady heat conduction. Mathematically,

it can be expressed as,

α =
κ

ρCp
,

where κ, ρ and Cp represent the thermal conductivity of material, the density and the

specific heat capacity respectively. The unit and dimension of thermal diffusivity in SI

system are m2s−1 and [LT−1] respectively.

Definition 2.1.24. Prandtl number Pr

It is the ratio between the momentum diffusivity (ν) and the thermal diffusivity (α). It

is the dimensionless number. Mathematically it can be written as,

Pr =
ν

α
=⇒ µ/ρ

k/cp
=⇒ µcp

k
,

where µ represents the dynamic viscosity, Cp the specific heat and κ stands for thermal

conductivity. The relative thickness of thermal and momentum boundary layer are

controlled by Prandtl number. For small Pr, heat is distributed rapidly corresponded

to the momentum.

Definition 2.1.25. Lewis number Le

It is the ratio of thermal diffusivity to the mass diffusivity. Mathematically,

Le =
α

DB
,

where α is the thermal diffusivity and DB the Brownian mass diffusivity.

Definition 2.1.26. Reynolds number Re

It is used to predict flow pattern weather the flow is turbulent or laminar. It is the ratio

of inertial force to viscous force. The formulae is given by

Re =
ρV L

µ
(2.3)

where ρ is density, V is velocity, L is length and µ is viscosity of fluid.

Definition 2.1.27. Schmidt number (Sc)

Schmidt number (Sc) is defined as the ratio of momentum diffusivity (viscosity) and

mass diffusivity. It can be written as

Sc =
ν

DB
(2.4)
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Definition 2.1.28. Sherwood number (Sh)

It is used in mass transfer ratio. It is also called nusselt number.It is define as

Sh =
K

D/L
(2.5)

Definition 2.1.29. Boundary layer flow

A layer of reduced velocity in fluid is called boundary layer (including the matter like air

and water) and this in return is exactly adjacent to solid surface which is just following

the fluid. The basic idea of boundary layer in motion of a fluid over a surface was first

introduced by Ludwig Prandtl (1874-1953). Heat transfer and skin friction are due to

the basic ideas and knowledge introduced by him in twentieth century. The reason why

we have the velocity zero’s exactly adjacent to the layer is that the viscous effect and

the layer of fluid which makes contact with the surface becomes slowly adhered to the

surface resulting in a condition of no-slip. The phenomenon of shearing takes place due

to the fact that the layers of fluid are moving. The ratio of the two important forces

determined by the Reynolds number play a vital role in determination of the thickness

of the boundary layer. There are two types of boundary layers:

• Hydrodynamic boundary layer

• Thermal boundary layer

Definition 2.1.30. Hydrodynamic boundary layer

A region of a fluid flow where the transition from zero velocity at the solid surface to

the free stream velocity at some extent far from surface in the direction normal to the

flow takes place in a very thin layer, is known as hydrodynamic boundary layer.

Definition 2.1.31. Thermal boundary layer

The heat transfer exchange surface and the free stream have a liquid or a gaseous agent

for heat transfer. From wall to free stream we come across the change of temperature of

heat transfer agent. Fluid velocity and profile change is similar. It increases from wall

to main stream. The surface temperature is assumed to be equal to the temperature of

the fluid layer closed to the wall inside the boundary and this temperature is equal to

the temperature of the bulk at some point in the fluid.

Definition 2.1.32. Similarity transformation

Similarity Transformation is a mathematical technique that is applicable in some cases

by which the PDEs of a problem are converted into the ODEs. This technique obviously

reduces the number of independent variables of the problem to one. It can be viewed as

a rule for combining the two independent variables into a new variable. [24]
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Definition 2.1.33. Shooting method

Shooting Method is a numerical technique used to solve the BVPs for ODEs. It is

an iterative techniquew that transform the original BVPs to the related IVPs with its

initial conditions. The formulated problem requires the IVP solution with arbitrary

chosen initial conditions to approximate the boundary conditions at the end point. If

the boundary conditions are not fulfilled to the required accuracy, with the new set of

initial conditions the method is repeated again until the required accuracy is achieved or

to the limit of the iteration is reached then the resulting IVP numerically solved by any

appropriate method for solving the linear ordinary differential equation.The advantages

of shooting methods are:

• Easy and simple.

• Fast and efficient.

• Requires less storage.



Chapter 3

Convectection of Maxwell fluid

over stretching porous surface in

the presence of nanoparticles

3.1 Introduction

In this chapter, we examine the influence of heat source/sink of Maxwell fluid in the

steady boundary layer flow in the presence of nanoparticles with the convective boundary

condition. The study of convective heat transfer has great importance in engineering

problems. Furthermore, nanoparticles can improve thermal conductivity, when added to

the base fluid. We describe the flow equations which are then transformed into a system

of coupled non-linear ODEs by implementing a proper similarity transformation. These

modeled ODEs are solved numerically by using shooting method. Finally the numerical

results are discussed at the end of the chapter for various physical parameters affecting

the flow and heat transfer and found to be in excellent agreement with those obtained

by the Matlab bvp4c code. Graphs and tables are also discussed to show the significance

of the physical parameters. This chapter provides the detailed review of Cao et al. [24].

3.2 Mathematical modeling

Consider the incompressible, two-dimensional and steady flow of a fluid with heat trans-

fer past a porous surface in nanoparticles. The geometry of flow model is given in 3.1

11
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Figure 3.1: Geometry for the flow under consideration.

The governing equations obeying the boundary layer theory can be written as,

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0, (3.1)

ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
= ν

∂2ū

∂ȳ2
+ k0(ū

2∂
2ū

∂x̄2
+ v̄2

∂2ū

∂ȳ2
+ 2ūv̄

∂2ū

∂x̄∂ȳ
), (3.2)

ū
∂T

∂x̄
+ v̄

∂T

∂ȳ
= α

∂2T

∂ȳ2
+

Q0

ρfcp
(T − T∞) + τ(DB(

∂C

∂ȳ

∂T

∂ȳ
) +

DT

T∞
(
∂T

∂ȳ
)2), (3.3)

ū
∂C

∂x̄
+ v̄

∂C

∂ȳ
= DB(

∂2C

∂ȳ2
) +

DT

T∞

∂2T

∂ȳ2
. (3.4)

In Eqs. (3.1) - (3.4), ū and v̄ are the velocities in the x̄− and ȳ− directions respectively, α

denotes thermal diffusivity, base fluid density is ρf , ν denotes fluid kinematic viscosity,

T denotes the fluid temperature, ambient temperature is T∞, k0 denotes relaxation

time, Q0 denotes heat generation, Brownian diffusion coefficient DB, DT denotes the

thermophoretic diffusion coefficient, cp is the specific heat of the constant pressure, τ

denotes the effective heat capacity and nanoparticle volume fraction is C.

The associated boundary conditions for the above system of equations are,

ū = ax̄, v̄ = vw, −k∂T
∂ȳ

= hf (Tf − T ), C = Cw, at y = 0, (3.5)

ū→ 0, T → T∞, C → C∞ as y →∞. (3.6)

In Eqs. (3.5) and (3.6), a > 0 is a constant, Cw denotes the wall fraction of nanoparticles,

vw shows the velocity at wall, k is the effective thermal conductivity of nanofluid and

the ambient nanoparticle volume fraction is C∞.

3.3 Similarity transformation

In this section, we convert the system of Eqs. (3.1) - (3.4) along with the boundary

conditions (3.5) - (3.6) into a dimensionless form. To find out the solution of our model,
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we use the following similarity transformation.

x =
x̄√
ν
a

, y =
ȳ√
ν
a

, u =
ū√
aν
. v =

v̄√
aν
, θ =

T − T∞
Tf − T∞

, φ =
C − Cw
Cw − C∞

.

The stream function ψ defined by u = ∂ψ
∂y and v = −∂ψ

∂x leads to the following dimen-

sionless form of (3.2) - (3.4):

ψxψxy − ψxψyy − ψyyy − β((ψy)
2ψxxy + (ψx)2ψyyy − 2ψxψyψxyy) = 0, (3.7)

ψyθx − ψxθy −
1

Pr
θyy − Sθ −Nbφyθy −Nt(θy)2 = 0, (3.8)

LePr(ψyφx − ψxφy)− φyy −
Nt

Nb
θyy = 0, (3.9)

where β = ak0 is the Maxwell parameter, Nb = τDB(Cw−C∞)
ν is the parameter of Brow-

nian motion, Nt =
τDT (Tf−T∞)

νT∞
is the thermophoresis parameter, S = Q0

aρf cp
is the heat

source (S > 0) or sink (S < 0) parameter, Le = α
DB

is Lewis number and Pr = ν
α is

Prandtl number.

After applying the stream function, the corresponding boundary conditions for the ve-

locity components expressed in Eqs. (3.5) and (3.6) would be,

ψy = x, ψx = M, θy = Bi(θ − 1), φ = 1, at y = 0 (3.10)

ψy → 0, θ → 0, φ→ 0, as y →∞. (3.11)

where M = − vw√
aν

is the premeability parameter and Bi =
hf
k

√
ν
a is the Biot number.

The corresponding similarity functions and variables are

η = y, ψ = xG(η), θ = θ(η), φ = φ(η). (3.12)

The differential Eqs. (3.7) - (3.9) with the associated boundary conditions (3.10) - (3.11)

take the following form after applying the similarity transformation (3.12).

(1 + βG2)G′′′ +GG′′ + 2βGG′G′′ − (G′)2 = 0, (3.13)

1

Pr
θ′′ +Gθ′ + Sθ +Nbθ′φ′ +Nt(θ′)2 = 0, (3.14)

φ′′ + LePrGφ′ +
Nt

Nb
θ′′ = 0. (3.15)
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The boundary conditions become

G(η) = M, G′(η) = 1, φ(η) = 1, θ′(η) = Bi(θ(η)− 1), at η = 0, (3.16)

G′(η)→ 0, θ(η)→ 0, φ(η)→ 0, as η =∞. (3.17)

3.4 Solution methodology

The analytic solution of the system of equations with corresponding boundary conditions

(3.13) - (3.17) cannot be found because they are highly non linear and coupled. So we use

a numerical technique, i.e., shooting technique with fourth order Runge-Kutta method

[25]. In order to solve the system of ODEs (3.13) - (3.15) with boundary conditions

(3.16) - (3.17) using shooting method, we have to first convert these system of equations

into a system of first order differential equations. For this purpose, let

G = y1, G′ = y2, G′′ = y3, G′′′ = y′3,

θ = y4, θ′ = y5 , θ′′ = y′5,

φ = y6 , φ′ = y7 , φ′′ = y′7.

(3.18)

The coupled nonlinear momentum, temperature and concentration equations are then

converted into the following system of seven first order differential equations and the

corresponding boundary conditions are transformed into the following form:

y′1 = y2, (3.19)

y′2 = y3, (3.20)

y′3 =
1

1 + βy21
(−y1y3 − 2βy1y2y3 + (y2)

2), (3.21)

y′4 = y5, (3.22)

y′5 = Pr(−y1y5 − Sy4 −Nby5y7 −Nt(y5)2), (3.23)

y′6 = y7, (3.24)

y′7 = −LePry1y6 −
Nt

Nb
y′5, (3.25)

y1(0) = M, y2(0) = 1, y5(0) = Bi(y4(0)− 1), y6(0) = 1. (3.26)

The shooting method requires the initial guess for y3(η), y4(η) and y7(η) at η = 0, and

through Newton’s method we vary each guess until we obtain an approximate solution

for our problem. To check accuracy of the obtained numerical results by shooting method
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we compare them by the numerical results acquired by Matlab bvp4c solver and found

them in excellent agreement.

3.5 Results and discussion

The objective of this section is to analyze the numerical results displayed in the form of

tables and graphs. The computations are carried out for various values of the effects of

Maxwell parameter β, Biot number Bi, Prandtl number Pr, Brownian motion parameter

Nb, Thermophoresis parameter Nt, parameter M , heat source parameter S and hence

the influence of these parameters on velocity, temperature and concentration profile are

discussed.

The comparison of present results with those obtained by Makinde and Aziz [6] corre-

sponding to -θ(0) and -φ(0) is presented in Table 3.1. It shows that increases in NT

cause decrease in both −θ′(0) and −φ′(0). The numerical value of -θ(0) and -φ(0) for

various value of Pr, S and M when other parameters are kept fixed are present in Table

3.2 which indicate that increase in Prandtl number cause increase in both −θ′(0) and

−φ′(0).

Present Makinde and Aziz[6]
Nt −θ′(0) −φ′(0) −θ′(0) −φ′(0)

0.1 0.092907 2.277399 0.0929 2.2774
0.2 0.092733 2.248939 0.0927 2.2490
0.3 0.092545 2.222793 0.0925 2.2228
0.4 0.092344 2.199173 0.0923 2.1992
0.5 0.092126 2.178327 0.0921 2.1783

Table 3.1: Comparison of -θ′(0) and -φ′(0) for Pr = 10, Le = 1, Nb = 0.1 and
β = M = S == 0

S = 0.5, M = 1 S = −0.5, M = 1 S = M = 0
Pr −θ′(0) −φ′(0) −θ′(0) −φ′(0) −θ′(0) −φ′(0)

2 0.094950 2.409880 0.096213 2.406364 0.089191 0.867379
4 0.097118 4.544080 0.097616 4.542003 0.091777 1.340429
6 0.097815 6.616794 0.098127 6.615211 0.092622 1.704483
8 0.098143 8.663921 0.098378 8.662570 0.092914 2.012471

Table 3.2: Values of -θ′(0) and -φ′(0) for Nb = Nt = β = Bi = 0.1 and Le = 1
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Figure 3.2 shows that when Maxwell parameter increases, boundary layer thickness also

increases. Figure 3.3 gives the effect of Biot number in the presence of heat source/sink

on temperature and Figure 3.4 shows the effect of Biot number on concentration. It is

found that temperature and concentration are increasing functions of Biot number. It

is also be observed that heat source and heat sink has minor effect on the concentration

φ(0). Figure 3.5 shows the impact of Le on temperature θ(0) and Figure 3.6 shows

the effect of Le on concentration φ(0). Temperature and concentration are decreasing

function of Lewis number. Figure 3.7 shows the effect of Prandtl number on temper-

ature and Figure 3.8 shows the effect of Prandtl number on concentration. Both are

decreasing function of Pr. Heat source is higher than heat sink in temperature for fixed

Prandtl number. Figures 3.9 shows the impact of Brownian motion in temperature and

Figure 3.10 shows the effect of Nb on concentration. The temperature increases with the

increase of Brownian motion. The influence near the wall is high. The Brownian motion

parameter is the decreasing function of concentration. Figure 3.11 and 3.12 shows the

impact of thermophoresis parameter on the temperature and concentration simultane-

ously. Both temperature and concentration are increasing functions of Nt. Figure 3.13

and 3.14 shows the effect of suction velocity in both temperature and concentration

respectively. Figure 3.15 shows the effect of heat source on temperature.
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Figure 3.2: Impact of Maxwell parameter β on velocity G′(η).
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Figure 3.5: Effects of Lewis number Le on temperature θ(η)
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Figure 3.7: Effects of Prandtl number Pr on temperature θ(η)
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Figure 3.8: Effects of Prandtl number Pr on concentration φ(η)
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Figure 3.9: Effects of Brownian motion parameter Nb on temperature θ(η)
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Figure 3.10: Effects of Brownian motion parameter Nb on concentration φ(η)
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Figure 3.11: Impact of Nt on temperature θ(η).
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Figure 3.13: Impact of parameter M on temperature θ(η)
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Chapter 4

Convection of steady slip

Maxwell fluid and heat transfer

with the effects of thermal

radiation and chemical reaction

over a stretching sheet

4.1 Introduction

In this chapter we extend the flow model of Cao et al. [24] that was introduced in previ-

ous chapter by considering the effect of thermal radiation as a function of temperature

and chemical reaction as function of concentration. We will examine the steady slip flow

with heat transfer of viscous, incompressible, laminar and two-dimensional fluid flow

over a permeable plate through a porous surface with thermal radiation and chemical

reaction. By using similarity transformation the nonlinear PDEs of momentum, tem-

perature and concentration are converted into a system of ODEs. Numerical solution of

these modeled ODEs are obtained by using shooting method. Finally at the end of chap-

ter results are discussed and found to be in excellent agreement with Matlab bvp4c code.

Significance of different physical parameters on dimensionless velocity, temperature and

concentration are elaborated with the help of graphs and tables.

24
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4.2 Problem formulation

Consider the laminar, two-dimensional and steady flow of a fluid with heat transfer past

a stretching surface. The geometry of flow model is given in 4.1

Figure 4.1: Geometry for the flow under consideration.

Assume that the fluid under investigation is taken as viscous and incompressible, the

body forces like gravitational force, electromagnetic force, etc. are negligible. Thermal

radiation are taken as function of temperature and chemical reaction as a function of

concentration. The associated equations for the flow model are given in Eqs. (4.1) -

(4.4), which under boundary layer approximation can be written as,

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0, (4.1)

ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
= ν

∂2ū

∂ȳ2
+ k0(ū

2∂
2ū

∂x̄2
+ v̄2

∂2ū

∂ȳ2
+ 2ūv̄

∂2ū

∂x̄∂ȳ
), (4.2)

ū
∂T

∂x̄
+ v̄

∂T

∂ȳ
= α

∂2T

∂ȳ2
+ τ(DB(

∂C

∂ȳ

∂T

∂ȳ
) +

DT

T∞
(
∂T

∂ȳ
)2)− 1

ρCP

∂qr
∂ȳ

, (4.3)

ū
∂C

∂x̄
+ v̄

∂C

∂ȳ
= DB(

∂2C

∂ȳ2
) +

DT

T∞
(
∂2T

∂ȳ2
)− k1(C − C∞). (4.4)

From Eqs. (4.1) - (4.4), ū and v̄ are the velocities in the x̄− and ȳ− directions respec-

tively, α denotes thermal diffusivity, base fluid density is ρ, ν denotes fluid kinematic

viscosity, T denotes the fluid temperature, ambient temperature is T∞, k0 is the relax-

ation, Brownian diffusion coefficient DB, DT is the thermophoretic diffusion coefficient,

cp is the specific heat of the constant pressure, τ denotes the ratio of the effective heat

capacity of the nanoparticle, qr is radiative heat flux and nanoparticle volume fraction

is C.
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The associated boundary conditions for the above system of equations are,

ū = ax̄+ k0

(
2− σν
σν

)(
∂ū

∂ȳ

)
, v̄ = 0, − k∂T

∂ȳ
= hf (Tf − T ),

−DB
∂C

∂ȳ
= hc(Cw − C), at y = 0, (4.5)

ū→ 0, T → T∞, C → C∞, as y→∞. (4.6)

Here a is a constant, σν is electrical conductivity, Cw is the fraction of nanoparticles

at the wall, k is the thermal conductivity of nanofluid and C∞ is the ambient volume

fraction of nanoparticles.

The radiative heat flux qr is given as

qr = −4σ

3k

∂T 4

∂y
(4.7)

where σ is Stefan Boltzmann constant, k is mean absorption coefficient. We expend T 4

by Taylor’s series. T 4 = T 4
∞ + 4T 3

∞(T − T∞) + ....,

ignoring higher order terms, we get

T 4 = −3T 3
∞ + 4T 3

∞T (4.8)

substituting (4.8) into (4.7),we get

∂qr
∂y

= −16T 4
∞σ

3k

∂2T

∂y2
(4.9)

4.3 Solution of problem

In this section we transform the system of Eqs. (4.1) - (4.4) along with the boundary

conditions (4.5) and (4.6) into a dimensionless form. To find out the solution of PDEs

we use the similarity transformation technique here. We introduce the dimensionless

similarity variable,

x =
x̄√
ν
a

, y =
ȳ√
ν
a

, u =
ū√
aν
, v =

v̄√
aν
, θ =

T − T∞
Tf − T∞

, φ =
C − C∞
Cw − C∞

.

The stream function ψ defined by u = ∂ψ
∂y and v = −∂ψ

∂x . The equation of continuity (4.1)

is satisfied identically, the effect of stream function on the remaining three equations,

the momentum Eq. (4.2), the temperature Eq. (4.3) and concentration Eq. (4.4) are as
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follows,

ψxψxy − ψxψyy − ψyyy − β(ψy)
2ψxxy + (ψx)2ψyyy − 2ψxψyψxyy = 0, (4.10)

(1 + Tr)θyy + Pr(Nt(θy)
2 +Nbψyθy + ψxθy), (4.11)

φyy +
Nt

Nb
θyy + LePrψxφy − LePrγψ. (4.12)

where β = ak0 is the Maxwell parameter, Tr = 16σT 4
∞

3kk∞
is thermal radiation parame-

ter, Nb = τDB(Cw−C∞)
ν is the Brownian motion parameter, Nt =

τDT (Tf−T∞)
νT∞

is the

thermophoresis parameter, Le = α
DB

is Lewis number Pr = ν
α denotes Prandtl number

and γ = k
a is chemical reaction parameter . After applying the stream function, the

corresponding boundary conditions for the velocity components expressed in Eqs. (4.5)

and (4.6) would be,

ψ = 0, ψy = 1 + bψyy, θy = Bi1(θ − 1), φy = Bi2(φ− 1), at y = 0, (4.13)

ψy → 0, θ → 0, φ→ 0, as y →∞. (4.14)

where b = k0
2−σν
σν

√
a
ν is slip coefficient, Bi1 =

hf
k

√
ν
a is the temperature Biot number

and Bi2 =
hf
DB

√
ν
a is concentration Biot number.

The corresponding variable and functions are

η = y, ψ = xG(η), θ = θ(η), φ = φ(η). (4.15)

The differential Eqs. (4.10) - (4.12) with the associated boundary conditions (4.13) and

(4.14) takes the following form after applying the similarity transformation together with

stream function,

(1 + βG2)G′′′ +GG′′ − (G′)2 + 2βGG′G′′ = 0, (4.16)

(1 + Tr)θ′′ + PrNbθ′φ′ + PrNt(θ′)2 + PrGθ′ = 0, (4.17)

φ′′ +
Nt

Nb
θ′′ + LePrGφ′ − LePrγφ = 0, (4.18)

G(η) = 0, G′(η) = 1 + bG′′(η), θ′(η) = Bi1(θ(η)− 1),

φ′(η) = Bi2(φ(η)− 1), at η = 0, (4.19)

G′(η)→ 0, θ(η)→ 0, φ(η)→ 0, at η →∞. (4.20)
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4.4 Solution methodology

The analytic solution of system of equations with corresponding boundary conditions

(4.16) - (4.18) cannot be found because they are non linear and coupled. So we use

numerical technique, i.e., shooting - Newton technique with fourth order Runge-Kutta

method [25]. In order to solve the system of ordinary differential Eqs. (4.16) - (4.18)

with boundary conditions (4.19) - (4.20) using shooting method, we have to convert

these equations into a system of first order differential equations, let

G = y1, G′ = y2, G′′ = y3, G′′′ = y′3,

θ = y4, θ′ = y5, θ′′ = y′5,

φ = y6, φ′ = y7, φ′′ = y′7.

(4.21)

Then the coupled nonlinear momentum, temperature and concentration equations are

converted into system of seven first order simultaneous equations and the corresponding

boundary conditions transforms the following form:

y′1 = y2, (4.22)

y′2 = y3, (4.23)

y′3 =
1

1 + βy21
(−y1y3 − 2βy1y2y3 + (y2)

2), (4.24)

y′4 = y5, (4.25)

y′5 =
1

1 + Tr
(−PrNby5y7 − PrNt(y5)2 − Pry1y5), (4.26)

y′6 = y7, (4.27)

y′7 = −LePry1y7 + LePrγy6 −
Nt

Nb
y′5, (4.28)

y1(0) = 0, y2(0) = 1 + by3(0), y5(0) = Bi1(y4(0)− 1), y7(0) = Bi2(y6(0)− 1). (4.29)

The shooting method requires the initial guess for y3(η), y4(η) and y6(η) at η = 0, and

through Newton’s method we vary each guess until we obtain an appropriate solution

for our problem. To check accuracy we compare obtained result by the numerical results

acquired by Matlab bvp4c solver and found them in excellent agreement.
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4.5 Results and discussion

The objective of this section is to analyze the effect of different parameters, b, β, Pr, Tr,

Nb, Nt, Le, γ, Bi1 and Bi2 (i.e., slip coefficient, Maxwell parameter, Prandtl number

temperature, thermal radiation parameter, Brownaian motion parameter, Thermophore-

sis parameter, Lewis number, Biot number and thermal relaxation time .) on dimen-

sionless velocity, dimensionless temperature and dimensionless concentration profiles.

In this suction, we discuss some parameters in the form of tables. In Table 4.1 we

discuss about the effect of Maxwell parameter β on −G′′(0), −θ′(0) and −φ′(0). The

increase of Maxwell parameter may cause increase in −G′′(0) and increase of Maxwell

parameter may cause decrease in −θ′(0) and −φ′(0). Table 4.2 shows the effect of

Prandtl number, Biot number and Lewis number on −θ′(0) and compare the result with

the obtained results of Makinde and Aziz [6]. We observe that increase of Biot number

may cause increase in −θ′(0) and converse for Lewis number.

Shooting Bvp4c
β −G′′(0) −θ′(0) −φ′(0) −G′′(0) −θ′(0) −φ′(0)

0 0.86262 0.08531 0.00760 0.86262 0.08536 0.00763
0.2 0.89747 0.08508 0.00758 0.89747 0.08508 0.00758
0.5 0.94436 0.08507 0.00711 0.94436 0.08507 0.00711
0.8 0.98676 0.08440 0.00716 0.98682 0.08440 0.00716
1 1.01413 0.08430 0.00691 1.01423 0.08430 0.00691

Table 4.1: Values of −G′′(0) , −θ′(0) and −φ′(0) for Nb = Nt = b = Bi = 0.1, P r =
Le = 1

Parameters Present Makinde and Aziz[6]
P r Bi Le −θ′(0) −θ′(0)
1 0.1 5 0.07895 0.0789
2 0.08063 0.0806
3 0.07358 0.0735
4 0.03872 0.0387
5 1 0.1476 0.1476

10 0.15508 0.1550
100 0.15572 0.1557
∞ 0.15577 0.1557
0.1 10 0.06473 0.0647

15 0.06008 0.0600
20 0.05704 0.0570

Table 4.2: Comparison of −θ′(0) for Nb = Nt = 0.5
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In the following section, we discuss the impact of different parameters on velocity, tem-

perature and concentration profile. We start with the effect of Maxwell parameter β on

velocity G′(η) shown in Figure 4.2. G′(η) increases with the increase of Maxwell param-

eter β. So G′(η) is increasing function of β. Figure 4.3 shows the effect of slip coefficient

b on G′(η). In Figure, velocity G′(η) shows decreasing behaviour for the increment of

slip coefficient b. The effect of thermal radiation parameter Tr on temperature profile

θ(η) are shown in Figure 4.4 respectively. Temperature increases with the increase of

thermal radiation parameter Tr. The effect of radiation is intensify the heat transfer

thus radiation should be at its minimum in order to fascilate cooling process. In Figure

4.5 shows the effect of Prandtl number on temperature. θ(η) decrease with the increase

of Pr because Prandtl number is the ratio of momentum diffusivity to thermal diffusiv-

ity so when we increase Prandtl number thermal diffusivity decrease that cause decrease

in temperature and thermal boundary layer thickness. Figure 4.6 shows the effect of

Prandtl number Pr on concentration φ(η). φ(η) decreases with the increase of Pr. The

decrease of φ(η) due to increase of Pr is far away from surface. Thermophoresis pa-

rameter Nt is increasing parameter of both temperature and concentration are shown in

Figure 4.7 and 4.8. This is because thermophoretic force generated by the temperature

gradient results in fast flow away from the stretching surface. In Figure 4.10, Brownaian

motion parameter Nb is decreasing function of φ(η). Concentration decreases with the

increase of Nb near the surface. Temperature Biot Number Bi1 is increasing function of

both temperature and concentration as shown in Figure 4.11 and 4.12. In Figure 4.13,

concentration decreases with the increase of concentration Biot number Bi2. Lewis

number Le is decreasing function of φ(η). Increase Lewis number may decrease Brow-

nian diffusion coefficient because Lewis number is the ratio of momentum diffusivity to

Brownian diffusion coefficient. Thermal relaxation parameter γ is decreasing function

of concentration shown in Figure 4.14 and 4.15 respectively.
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Chapter 5

Conclusion

We have presented the numerical study of steady slip flow and heat transfer of viscous,

incompressible, laminar and two-dimensional fluid over a stretching porous surface with

thermal radiation and chemical reaction. The current investigation is carried out in the

presence of velocity, thermal slip conditions and convective boundary condition. The

effects of different physical parameters on dimensionless velocity G′ and dimensionless

temperature θ and concentration φ are presented in the form of tables and graphs. The

main findings of this work are as follows

• Velocity field G′ increases by enlarging Maxwell parameter β and decreases by

enlarging slip coefficient b.

• Temperature field θ increases with an increase in thermal radiation Tr.

• Increase of Prandtl number Pr causes decrease in temperature and concentration.

• Temperature and concentration increase by enlarging thermophoresis parameter

Nt

• For larger values of Lewis number Le and chemical reaction parameter γ, concen-

tration field φ shows decreasing behavior.

5.1 Future recommendations.

The present model has shown many simplifications to focus on the principal effects of slip

parameter, thermal radiation and chemical reaction. An interesting area to investigate

in future can be the use of thermal radiation, second order slip at the boundary, impact

of different nanoparticles, viscous dissipation and variable porosity.
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